física

física | s. f. fem. sing. de físico
fí·si·ca
substantivo feminino

1. Ciência que estuda as propriedades dos corpos e as leis que tendem a modificar o estado e o movimento desses corpos, sem lhes modificar a natureza.

2. Livro que trata dessa ciência.

3. [Antigo]   [Antigo]   Medicina.

física experimental • [Física]   • [Física]   A que é baseada na experiência.

física matemática • [Física]   • [Física]   Aquela em que as leis físicas são demonstradas pela matemática.

física molecular • [Física]   • [Física]   A que se ocupa da constituição molecular dos corpos e das acções recíprocas das suas moléculas.

física quântica • [Física]   • [Física]   A que se dedica ao estudo dos fenómenos físicos à escala atómica e subatómica .

física recreativa • Conjunto de experiências de física ou de prestidigitação, para recreio.
fí·si·co fí·si·co
adjectivo adjetivo

1. Relativo às condições e leis da natureza; natural; corpóreo; material.substantivo masculino

2. Indivíduo especialista em física.

3. Conjunto dos traços morfológicos do corpo humano. = COMPLEIÇÃO, CONSTITUIÇÃO, FISIONOMIA, PORTE

4. Aspecto exterior de alguma coisa. = CONFIGURAÇÃO

5. Conjunto das funções fisiológicas.

6. [Antigo]   [Antigo]   Médico.


substantivo feminino Ciência que tem por objeto o estudo das propriedades gerais dos corpos e as leis que tendem a modificar seu estado ou seu movimento sem modificar-lhes a natureza.
Obra que trata dessa ciência.
Física experimental, física baseada na experiência.
Física matemática, física cujas leis são traduzidas por equações.


Física (do grego antigo: φύσις physis “natureza”) é a ciência que estuda a natureza e seus fenômenos em seus aspectos mais gerais. Analisa suas relações e propriedades, além de descrever e explicar a maior parte de suas consequências. Busca a compreensão científica dos comportamentos naturais e gerais do mundo em nosso torno, desde as partículas elementares até o universo como um todo. Com o amparo do método científico e da lógica, e tendo a matemática como linguagem natural, esta ciência descreve a natureza através de modelos científicos. É considerada a ciência fundamental, sinônimo de ciência natural: as ciências naturais, como a química e a biologia, têm raízes na física. Sua presença no cotidiano é muito ampla, sendo praticamente impossível uma completíssima descrição dos fenômenos físicos em nossa volta. A aplicação da física para o benefício humano contribuiu de uma forma inestimável para o desenvolvimento de toda a tecnologia moderna, desde o automóvel até os computadores quânticos.Historicamente, a afirmação da física como ciência moderna está intimamente ligada ao desenvolvimento da mecânica, que tem como pilares principais de estudo a energia mecânica e os momentos linear e angular, suas conservações e variações. Desde o fim da Idade Média havia a necessidade de se entender a mecânica, e os conhecimentos da época, sobretudo aristotélicos, já não eram mais suficientes. Galileu centrou seus estudos nos projéteis, pêndulos e movimentos dos planetas; Isaac Newton, mais tarde, elaborou os princípios fundamentais da dinâmica ao publicar suas leis e a gravitação universal em seu livro Principia, que se tornou a obra científica mais influente de todos os tempos. A termodinâmica, que estuda as causas e os efeitos de mudanças na temperatura, pressão e volume em escala macroscópica, teve sua origem na invenção das máquinas térmicas durante o século XVIII. Seus estudos levaram à generalização do conceito de energia. A ligação da eletricidade, que estuda cargas elétricas, com o magnetismo, que é o estudo das propriedades relacionadas aos ímãs, foi percebida apenas no início do século XIX por Hans Christian Ørsted. As descrições físicas e matemáticas da eletricidade e magnetismo foram unificadas por James Clerk Maxwell. A partir de então, estas duas áreas, juntamente com a óptica, passaram a ser tratadas como visões diferentes do mesmo fenômeno físico, o eletromagnetismo. No início do século XX, a incapacidade da descrição e explicação de certos fenômenos observados, como o efeito fotoelétrico, levantou a necessidade de abrir novos horizontes para a física. Albert Einstein publicou a teoria da relatividade geral em 1915, propondo a constância da velocidade da luz e suas consequências até então inimagináveis. A teoria da relatividade de Einstein leva a um dos princípios de conservação mais importantes da física, a relação entre massa e energia, geralmente expressa pela famosa equação E=mc². A relatividade geral também unifica os conceitos de espaço e tempo: a gravidade é apenas uma consequência da deformação do espaço-tempo causado pela presença de massa. Max Planck, ao estudar a radiação de corpo negro, foi forçado a concluir que a energia está dividida em “pacotes”, conhecidos como quanta. Einstein demonstrou fisicamente as ideias de Planck, fixando as primeiras raízes da mecânica quântica. O desenvolvimento da teoria quântica de campos trouxe uma nova visão da mecânica das forças fundamentais. O surgimento da eletro e cromodinâmica quânticas e a posterior unificação do eletromagnetismo com a força fraca a altas energias são a base do modelo padrão, a principal teoria de partículas subatômicas, capaz de descrever a maioria dos fenômenos da escala microscópica que afetam as principais áreas da física.
A física é uma ciência significativa e influente e suas evoluções são frequentemente traduzidas no desenvolvimento de novas tecnologias. O avanço nos conhecimentos em eletromagnetismo permitiu o desenvolvimento de tecnologias que certamente influenciam o cotidiano da sociedade moderna: o domínio da energia elétrica permitiu o desenvolvimento e construção dos aparelhos elétricos; o domínio sobre as radiações eletromagnéticas e o controle refinado das correntes elétricas permitiu o surgimento da eletrônica e o consequente desenvolvimento das telecomunicações globais e da informática. O desenvolvimento dos conhecimentos em termodinâmica permitiu que o transporte deixasse de ser dependente da força animal ou humana graças ao advento dos motores térmicos, que também impulsionou toda uma Revolução Industrial. Nada disso seria possível, entretanto, sem o desenvolvimento da mecânica, que tem suas raízes ligadas ao próprio desenvolvimento da física. Porém, como qualquer outra ciência, a física não é estática. Físicos ainda trabalham para conseguir resolver problemas de ordem teórica, como a “catástrofe do vácuo”, gravitação quântica, termodinâmica de buracos negros, dimensões suplementares, flecha do tempo, inflação cósmica e o mecanismo de Higgs. Ainda existem fenômenos observados empiricamente e experimentalmente que ainda carecem de explicações científicas, como a possível existência da matéria escura, raios cósmicos com energias teoricamente muito altas e até mesmo observações cotidianas como a turbulência. Para tal, equipamentos sofisticadíssimos foram construídos, como o Large Hadron Collider, o maior acelerador de partículas já construído do mundo, situado na Organização Europeia para a Investigação Nuclear (CERN).




Deixe um comentário